谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Scalability enhancement of quantum computing under limited connectivity through distributed quantum computing

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
We employ quantum-volume random-circuit sampling to benchmark the two-QPU entanglement-assisted distributed quantum computing (DQC), and compare it with single-QPU quantum computing. We first specify a single-qubit depolarizing noise model in the random circuit. Based on this error model, we show the one-to-one correspondence of three figures of merits, namely average gate fidelity, heavy output probability, and linear cross-entropy. We derive an analytical approximation of the average gate fidelity under the specified noise model, which is shown to align with numerical simulations. The approximation is calculated based on an allocation matrix obtained from the extended connectivity graph of a DQC device. In numerical simulation, we unveil the scalability enhancement in DQC for the QPUs with limited connectivity. Furthermore, we provide a simple formula to estimate the average gate fidelity, which also provides us with a heuristic method to evaluate the scalability enhancement in DQC, and a guide to optimize the structure of a DQC configuration.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要