Panoramic view of artificial fruit ripening agents sensing technologies and the exigency of developing smart, rapid, and portable detection devices: A review.

Advances in colloid and interface science(2024)

引用 0|浏览2
暂无评分
摘要
Recently, the availability of point-of-care sensor systems has led to the rapid development of smart and portable devices for the detection of hazardous analytes. The rapid flow of artificially ripened fruits into the market is associated with an elevated risk to human life, agriculture, and the ecosystem due to the use of artificial fruit ripening agents (AFRAs). Accordingly, there is a need for the development of "Point-of-care Sensors" to detect AFRAs due to several advantages, such as simple operation, promising detection mechanism, higher selectivity and sensitivity, compact, and portable. Traditional detection approaches are time-consuming and inappropriate for on-the-spot analyses. Presented comprehensive review aimed to reveal how such technology has systematically evolved over time (through conventional, advanced, and portable smart techniques) detection detect AFRA, till date. Moreover, focuses and highlights a framework of initiatives undertaken for technological advancements in the development of smart the portable detection techniques (kits) for the onsite detection of AFRAs in fruits with in-depth discussion over sensing mechanism and analytical performance of the sensing technology. Notably, colorimetric detection methods have the greatest potential for real-time monitoring of AFRA and its residues because they are easy to assemble, have a high level of selectivity and sensitivity, and can be read by the human eye independently. This study sought to differentiate between traditional credible strategies by presenting new prospects, perceptions, and challenges related to portable devices. This review provides systematic framework of advances in portable field recognition strategies for the on-spot AFRA detection in fruits and critical information for development of new paper-based portable sensors for fruit diagnostic sectors.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要