Chrome Extension
WeChat Mini Program
Use on ChatGLM

An engineered DNA aptamer-based PROTAC for precise therapy of p53-R175H hotspot mutant-driven cancer

Science Bulletin(2024)

Cited 0|Views15
No score
Abstract
Targeting oncogenic mutant p53 represents an attractive strategy for cancer treatment due to the high frequency of gain-of-function mutations and ectopic expression in various cancer types. Despite extensive efforts, the absence of a druggable active site for small molecules has rendered these mutants therapeutically non-actionable. Here we develop a selective and effective proteolysis-targeting chimera (PROTAC) for p53-R175H, a common hotspot mutant with dominant-negative and oncogenic activity. Using a novel iterative molecular docking-guided post-SELEX (systematic evolution of ligands by exponential enrichment) approach, we rationally engineer a high-performance DNA aptamer with improved affinity and specificity for p53-R175H. Leveraging this resulting aptamer as a binder for PROTACs, we successfully develop a selective p53-R175H degrader, named dp53m. dp53m induces the ubiquitin-proteasome-dependent degradation of p53-R175H while sparing wildtype p53. Importantly, dp53m demonstrates significant antitumor efficacy in p53-R175H-driven cancer cells both in vitro and in vivo, without toxicity. Moreover, dp53m significantly and synergistically improves the sensitivity of these cells to cisplatin, a commonly used chemotherapy drug. These findings provide evidence of the potential therapeutic value of dp53m in p53-R175H-driven cancers.
More
Translated text
Key words
p53,Aptamer,PROTAC,Cancer,Drug resistance
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined