Water-sensitive fluorescent microgel inks to produce verifiable information for highly secured anti-counterfeiting

MATERIALS HORIZONS(2024)

引用 0|浏览9
暂无评分
摘要
The decryption and verification of encrypted information via a simple and efficient method is always difficult and challenging in the field of information security. Herein, a series of water-sensitive fluorescent microgels are fabricated for highly secured anti-counterfeiting with authenticity identification. The initial negatively charged microgels (MG) are made up of N-isopropylacrylamide (NIPAM), acrylic acid (AAc) and anthracen-9-yl acrylate (9-ANA, blue fluorescent monomer). The prepared MGs can bind cationic fluorescent dyes such as 5-aminofluorescein (FITC, green fluorescent dye) and rhodamine B (Rh B, red fluorescent dye) via electrostatic interaction, emitting multi-fluorescent colors based on the fluorescence resonance energy transfer (FRET) process. Furthermore, the fluorescence colors of MG-derived systems can be rapidly changed by swelling in water, which can block the FRET process and change the aggregation state of dyes. With the assistance of inkjet printing, multi-color security patterns can be designed and encoded, which can be revealed by UV irradiation and further verified by water stimulation. This study has pioneered a novel strategy to verify the authenticity of decrypted information, which greatly improves the security level of information. The printable multicolor microgels exhibit excellent discoloration behavior and can act as fluorescent anti-counterfeiting inks, which are ascribed to the water-responsive FRET effect and changes in the aggregation state of fluorescent dyes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要