2D Conductive Metal–Organic Frameworks for Electrochemical Energy Application

Organic Materials(2024)

Cited 0|Views1
No score
Abstract
Two-dimensional conductive metal–organic frameworks (2D c-MOFs) have attracted research attention, benefitting from their unique properties such as superior electronic conductivity, designable topologies, and well-defined catalytic/redox-active sites. These advantages enable 2D c-MOFs as promising candidates in electrochemical energy applications, including supercapacitors, batteries and electrocatalysts. This mini-review mainly highlights recent advancements of 2D c-MOFs in the utilization for electrochemical energy storage, as well as the forward-looking perspective on the future prospects of 2D c-MOFs in the field of electrochemical energy.Table of content:1 Introduction2 Design Principles of 2D c-MOFs3 Synthesis of 2D c-MOFs4 2D c-MOFs for Electrochemical Energy Storage4.1 Supercapacitors4.2 Metallic Batteries4.2.1 Lithium-Ion Batteries4.2.2 Sodium-Ion Batteries4.2.3 Zinc-Ion Batteries4.2.4 Sodium–Iodine Batteries4.2.5 Lithium–Sulfur Batteries4.2.6 Potassium-Ion Batteries5 2D c-MOFs for Electrochemical Energy Conversion6 Conclusions and Outlook
More
Translated text
Key words
2D conductive metal–organic frameworks,energy storage,capacitors,batteries,electrocatalysts
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined