Two-stage day-ahead and intra-day scheduling considering Electric Arc Furnace control and wind power modal decomposition

Xudong Zhao,Yibo Wang,Chuang Liu,Guowei Cai,Weichun Ge, Bowen Wang, Dongzhe Wang, Jingru Shang, Yiru Zhao

Energy(2024)

引用 0|浏览0
暂无评分
摘要
As the uncertainty in energy supply increases, engaging various flexible resources in power systems has emerged as an effective strategy to address wind curtailment issues. Existing research insufficiently explores how EAFs can participate in reducing wind curtailment or optimizing flexible power system resources to decrease CO2 emissions from TTPs and enhance wind energy absorption across various timescales. This study introduces a dual timescale, dual-tier scheduling methodology incorporating EAF regulation and wind power modal decomposition. The day-ahead model integrates EAF demand response to decrease wind curtailment, a comprehensive wind power allocation, and a TTP carbon minimization model. The intra-day model employs wind power modal decomposition for optimizing BESSs within WFs and schedules TTPs to minimize CO2 emissions. Implemented through iterative genetic algorithms and CPLEX solver techniques, simulation results from a real-case scenario indicate that incorporating EAF loads reduces wind curtailment by 40.49% and cuts CO2 emissions by 2.5% in the day-ahead phase. Furthermore, by applying modal decomposition, TTPs and BESSs absorb fluctuating wind power components, ensuring maximal wind utilization and substantial CO2 reduction at TTPs. This approach offers vast potential to enhance power system flexibility, advance energy-intensive industries' transition, and foster low-carbon initiatives at TTPs.
更多
查看译文
关键词
EAF load response,Wind energy absorption,Wind power decomposition,BESS control,CO2 reduction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要