谷歌浏览器插件
订阅小程序
在清言上使用

Learning Client Selection Strategy for Federated Learning Across Heterogeneous Mobile Devices

2024 25TH INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN, ISQED 2024(2024)

引用 2|浏览6
关键词
Mobile Devices,Federated Learning,Client Selection,Heterogeneous Mobile Devices,Model Performance,Training Data,System Performance,Internet Of Things,Performance Accuracy,Training Environment,Client Data,Federated Learning Algorithm,System Dynamics,Deep Neural Network,Global Model,Test Accuracy,Simulation Environment,Types Of Devices,Training Loss,Sub-models,Deep Neural Network Model,Local Training,Multi-agent Reinforcement Learning,Central Server,Processing Latency,Communication Cost,Federated Learning Framework,Training Round,Exit Point,Input State
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要