Estimation of Evaporation and Drought Stress of Pistachio Plant Using UAV Multispectral Images and a Surface Energy Balance Approach

Horticulturae(2024)

引用 0|浏览5
暂无评分
摘要
Water scarcity is a critical abiotic stress factor for plants in arid and semi-arid regions, impacting crop development and production yield and quality. Monitoring water stress at finer scales (e.g., farm and plant), requires multispectral imagery with thermal capabilities at centimeter resolution. This study investigates drought stress in pistachio trees in a farm located in Yazd province, Iran, by using Unmanned Aerial Vehicle (UAV) images to quantify evapotranspiration and assess drought stress in individual trees. Images were captured on 10 July 2022, using a Matrix 300 UAV with a MicaSense Altum multispectral sensor. By employing the Surface Energy Balance Algorithm for Land (SEBAL), actual field evapotranspiration was accurately calculated (10 cm spatial resolution). Maps of the optimum crop coefficient (Kc) were developed from the Normalized Difference Vegetation Index (NDVI) based on standard evapotranspiration using the Food and Agriculture Organization (FAO) 56 methodology. The comparison between actual and standard evapotranspiration allowed us to identify drought-stressed trees. Results showed an average and maximum daily evaporation of 4.3 and 8.0 mm/day, respectively, in pistachio trees. The real crop coefficient (Kc) for pistachio was 0.66, contrasting with the FAO 56 standard of 1.17 due to the stress factor (Ks). A significant correlation was found between Kc and NDVI (R2 = 0.67, p < 0.01). The regression model produced a crop coefficient map, valuable to support precise irrigation management and drought prevention, considering the heterogeneity at the farm scale.
更多
查看译文
关键词
UAV,SEBAL algorithm,crop water stress,irrigation management,arid region
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要