Chemical characterization and comparative analysis of different parts of Cocculus orbiculatus through UHPLC-Q-TOF-MS.

Xiao-Rui Wang, Mao-Chen Wei,Lin Qin,Dao-Peng Tan,Fa-Ming Wu,Jian Xie,Di Wu, An-Nian Liu,Jia-Jia Wu,Xing-Dong Wu,Yu-Qi He

Analytical methods : advancing methods and applications(2024)

引用 0|浏览8
暂无评分
摘要
Cocculus orbiculatus (L.) DC. (C. orbiculatus) is a medicinal herb valued for its dried roots with anti-inflammatory, analgesic, diuretic, and other therapeutic properties. Despite its traditional applications, chemical investigations into C. orbiculatus remain limited, focusing predominantly on alkaloids and flavonoids. Furthermore, the therapeutic use of C. orbiculatus predominantly focuses on the roots, leaving the stems, a significant portion of the plant, underutilized. This study employed ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS) with in-house and online databases for comprehensive identification of components in various plant parts. Subsequently, untargeted metabolomics was employed to analyze differences in components across different harvest periods and plant sections of C. orbiculatus, aiming to screen for distinct components in different parts of the plant. Finally, metabolomic analysis of the roots and stems, which contribute significantly to the plant's weight, was conducted using chemometrics, including principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), orthogonal partial least squares discriminant analysis (OPLS-DA), and heatmaps. A total of 113 components, including alkaloids, flavonoids, and organic acids, were annotated across the root, stem, leaf, flower, and fruit, along with numerous previously unreported compounds. Metabolomic analyses revealed substantial differences in components between the root and stem compared to the leaf, flower, and fruit during the same harvest period. PLS-DA and OPLS-DA annotated 10 differentiating components (VIP > 1.5, P < 0.05, FC > 2 or FC < 0.67), with 5 unique to the root and stem, exhibiting lower mass spectrometric responses. This study provided the first characterization of 113 chemical constituents in different parts of C. orbiculatus, laying the groundwork for pharmacological research and advocating for the enhanced utilization of its stem.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要