Solution-processed synthesis of ZnO/CdS heterostructure photoanode for efficient photoelectrochemical water splitting

Journal of Power Sources(2024)

引用 0|浏览5
暂无评分
摘要
A promising method for producing hydrogen from solar energy and transforming it into chemical fuel is photoelectrochemical (PEC) water splitting. This ecologically friendly process can also avoid energy crises. Herein, we present the electrodeposition and chemical bath deposition methods used to create ZnO-nanorod/CdS nanoparticle (ZnO/CdS) heterostructures. The structural, optical, morphological, and PEC properties are investigated. UV–Visible spectroscopy analysis reveals the ZnO/CdS films have absorption edges in the visible and ultraviolet regions. The CdS loading directly impacts the PEC result of ZnO/CdS photoanodes. The M-S plots show a positive slope, indicating the n-type nature of ZnO and CdS. Under illumination intensity of 100 mW cm−2, the ideal photocurrent density reaches 4.90 mA/cm2 at a bias of 1.35 V versus reversible hydrogen electrode (vs. RHE) and is five times greater than the pristine ZnO nanorods. The maximum applied bias photon to the current conversion efficiency of 0.23 % at 0.26 V vs. RHE is observed in the pristine ZnO photoanodes. In contrast, the ZnO/CdS photoanode has achieved 3.02 % at 0.26 V vs. RHE, almost 13 times greater than the pristine ZnO photoanode. Finally, the hydrogen evolution process and the mechanism of charge transfer in ZnO/CdS heterostructure are discussed.
更多
查看译文
关键词
PEC water splitting,ZnO/CdS heterojunction,Electrodeposition,XRD,Hydrogen evolution
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要