Chrome Extension
WeChat Mini Program
Use on ChatGLM

Experimental investigation on the low-velocity impact responses of fibre metal laminates with various internal and external factors

Thin-Walled Structures(2024)

Cited 0|Views12
No score
Abstract
This paper aims to investigate the low-velocity impact (LVI) failure mechanism of fibre metal laminates (FMLs), and systematically explore the effects of internal factors (layup sequence and laminate configuration) and external factors (impact energy and environmental temperature) on the LVI responses. The drop-weight impact tester was utilised to conduct LVI tests at -30 ℃, 25 ℃, and 80 ℃ on FML-2/1 and FML-3/2 laminates. These laminates were made of S-class high-strength glass fibre and 2024 aluminium-alloy sheet with unidirectional, angle-ply, cross-ply and quasi-isotropic layup sequences. The characteristic curves including contact force-time, contact force-deflection, absorbed energy-time, and strain-time near the dent on the impacted and non-impacted specimen surfaces were obtained respectively. Furthermore, the dent depth of the impacted surface of the FMLs was measured. FML's damage was detected by ultrasonic C-scan, and its longitudinal and transverse sections were scanned by X-ray computed tomography (CT). The findings suggest that the layup sequence has a significant effect on the LVI response of FML-2/1, but has no obvious influence on FML-3/2. Moreover, FML-3/2 exhibits greater impact resistance compared to FML-2/1. The severity of LVI damage increases with the increase of impact energy. Notably, compared to the cases at 25 ℃, the LVI failure mechanisms of FMLs undergo significant changes at -30 ℃. The elevated temperature of 80 ℃ significantly affects the LVI damage of FML-2/1, while it has no significant effect on FML-3/2.
More
Translated text
Key words
Fibre metal laminate,Low-velocity impact,Ultrasonic C-scan,X-ray computed tomography
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined