Diurnal Asymmetry Effects of Photovoltaic Power Plants on Land Surface Temperature in Gobi Deserts.

Remote. Sens.(2024)

Cited 0|Views5
No score
Abstract
The global expansion of photovoltaic (PV) power plants, especially in ecologically fragile regions like the Gobi Desert, highlights the suitability of such areas for large-scale PV development. The most direct impact of PV development in the Gobi Desert is temperature change that results from the land-use-induced albedo changes; however, the detailed and systemic understanding of the effects of PV expansion on land surface temperature remains limited. This study focuses on the 16 largest PV plants in the Chinese Gobi Desert, utilizing remote sensing data to assess their effects on land surface temperature. Our result showed a cooling effect during the daytime (−0.69 ± 0.10 °C), but a warming effect during the nighttime (0.23 ± 0.05 °C); the overall effect on the daily mean was a cooling effect (−0.22 ± 0.05 °C). Seasonal variations were observed, with the most significant cooling effect in autumn and the weakest in summer. The PV area was the most significant factor which influenced the temperature variation across PV plants. Our findings enrich our understanding of the environmental effects arising from the construction of PV plants and provide vital information for the design and management of increasingly renewable electricity systems globally.
More
Translated text
Key words
remote sensing,diurnal variability,land surface temperature,MODIS,solar energy
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined