Long range transport of South and East Asian anthropogenic aerosols counteracting Arctic warming

Suvarna Fadnavis, Sunil M. Sonbawne,Anton Laakso,Felix Ploeger,Alexandru Rap,Bernd Heinold, T. P. Sabin,Rolf Müller

npj Climate and Atmospheric Science(2024)

引用 0|浏览0
暂无评分
摘要
The large-scale convection during the Asian summer monsoon plays an important role in the rapid transport of boundary layer aerosols into the Asian summer monsoon anticyclone. Here, using the state-of-the-art ECHAM6–HAMMOZ aerosol-chemistry-climate model, we show that these aerosols are further transported to the Arctic along isentropic surfaces by the Brewer-Dobson-Circulation (BDC) during the monsoon season. Our model simulations show that East and South Asian anthropogenic emissions contribute significantly to the aerosol transported to the Arctic, which causes a higher negative net aerosol radiative forcing at the surface (dimming) of −0.09 ± 0.02 Wm−2 and −0.07 ± 0.02 Wm−2, respectively. Over the Arctic, the East Asian anthropogenic aerosols that include large amounts of sulfate cause a seasonal mean net radiative forcing at the top of the atmosphere (TOA) of −0.003 ± 0.001Wm−2 and a surface cooling of −0.56 K while the black carbon dominated aerosol from South Asia shows a positive TOA forcing of +0.004 ± 0.001Wm−2 with an only minor surface cooling of −0.043 K. Overall, the long-range transport of South Asian aerosols results in a notably warming throughout the atmospheric column but minimal temperature response at the Arctic surface. Conversely, East Asian aerosols cool the troposphere and heat the lower stratosphere in the Arctic. The Asian aerosol thus plays an ambivalent role, with the East Asian sources in particular having the potential to counteract the rapid rise in Arctic temperatures and the associated melting of snow and ice.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要