Implementation Study of Cost-Effective Verification for Pietrzak's Verifiable Delay Function in Ethereum Smart Contracts

CoRR(2024)

引用 0|浏览0
暂无评分
摘要
Verifiable Delay Function (VDF) is a cryptographic concept that ensures a minimum delay before output through sequential processing, which is resistant to parallel computing. Among the two well-known VDF protocols, Wesolowski and Pietrzak VDF, we focus on the Pietrzak VDF due to its computational efficiency and suitability for blockchain environments. Pietrzak's approach uses a recursive proof verification with the halving protocol, offering a practical alternative despite the longer proof length than Wesolowski's approach. Given the scarcity of research on practical VDF verification implementation, especially within smart contracts, this paper aims to implement cost-effective verification for the Pietrzak VDF in an Ethereum-based environment without compromising the VDF verification's integrity and reliability. Firstly, we propose generalized proof generation and verification algorithms for potential efficiency improvement. Secondly, we categorize and measure the gas cost of each part in a transaction for VDF verification. Thirdly, based on the analysis, we theoretically predict the optimized proof construction. Finally, we demonstrate the theoretical prediction matches the implementation results. Furthermore, our research shows that the proof length of the Pietrzak VDF is generated under 8 KB with the security level of 2048 bits, much smaller than the previous expectation. This implies that the Pietrzak VDF can be practically used for cryptographic applications on blockchains.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要