Recombinant fibroblast growth factor 4 ameliorates axonal regeneration and functional recovery in acute spinal cord injury through altering microglia/macrophage phenotype.

Rui Li, Juerong Feng, Liuxun Li, Guotian Luo, Yongpeng Shi, Shichao Shen, Xinrong Yuan, Jianlong Wu,Bin Yan,Lei Yang

International immunopharmacology(2024)

引用 0|浏览0
暂无评分
摘要
Neuroinflammation is one of the extensive secondary injury processes that aggravate metabolic and cellular dysfunction and tissue loss following spinal cord injury (SCI). Thus, an anti-inflammatory strategy is crucial for modulating structural and functional restoration during the stage of acute and chronic SCI. Recombinant fibroblast growth factor 4 (rFGF4) has eliminated its mitogenic activity and demonstrated a metabolic regulator for alleviating hyperglycemia in type 2 diabetes and liver injury in non-alcoholic steatohepatitis. However, it remains to be explored whether or not rFGF4 has a neuroprotective effect for restoring neurological disorders, such as SCI. Here, we identified that rFGF4 could polarize microglia/macrophages into the restorative M2 subtype, thus exerting an anti-inflammatory effect to promote neurological functional recovery and nerve fiber regeneration after SCI. Importantly, these effects by rFGF4 were related to triggering PI3K/AKT/GSK3β and attenuating TLR4/NF-κB signaling axes. Conversely, gene silencing of the PI3K/AKT/GSK3β signaling or pharmacological reactivation of the TLR4/NF-κB axis aggravated inflammatory reaction. Thus, our findings highlight rFGF4 as a potentially therapeutic regulator for repairing SCI, and its outstanding effect is associated with regulating macrophage/microglial polarization.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要