Chrome Extension
WeChat Mini Program
Use on ChatGLM

MXene-modified lemon peel-based composite phase change material with excellent photo-thermal conversion efficiency, thermal storage capacity and thermal conductivity for thermal management of electronic components

JOURNAL OF ENERGY STORAGE(2024)

Cited 0|Views8
No score
Abstract
The preparation of multifunctional composite phase change materials using green technology to achieve an efficient energy storage and conversion remains an issue of concern. In this paper, a lemon peel-based porous carbon (LPC) composite phase change material (CPCM) was prepared by using polyethylene glycol (PEG) 6000 as a phase change medium and MXene nanosheet-modified carbonized lemon peel as a support carrier. MXene nanosheets were bonded to a lemon peel-based porous carbon skeleton to construct an excellent continuous three-dimensional thermally conductive grid system. What makes it noteworthy is that the presence of MXene nanosheets substantially improves the thermal conductivity (0.66 W/mK) and photo-thermal conversion efficiency (theta = 96.4 %) of MXene-modified lemon peel-based porous carbon/polyethylene glycol composite phase change materials (PEG/LPC@M). It is noteworthy that PEG/LPC@M has remarkable thermal stability and still has high enthalpy after 100 cycles, which further proves the recyclability of PEG/LPC@M and PEG/LPC@M embodies great potential in the field of thermal management of electronic components. In conclusion, a novel multifunctional CPCM was prepared by a simple and green process method in this study, which provides a new idea for waste recycling and reuse, and also has a wide range of applications in thermal management of electronic devices.
More
Translated text
Key words
Lemon peel -based porous carbon,MXene nanosheets,Phase change material
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined