Optimization of Culture Media and Feeding Strategy for High Titer Production of an Adenoviral Vector in HEK 293 Fed-Batch Culture.

Vaccines(2024)

引用 0|浏览2
暂无评分
摘要
Adenoviruses are efficient and safe vectors for delivering target antigens and adenovirus-based vaccines have been used against a wide variety of pathogens, including tuberculosis and COVID-19. Cost-effective and scalable biomanufacturing processes are critical for the commercialization of adenovirus-vectored vaccines. Adenoviral vectors are commonly produced through the infection of batch cultures at low cell density cultures, mostly because infections at high cell densities result in reduced cell-specific virus productivity and does not improve volumetric productivity. In this study, we have investigated the feasibility of improving the volumetric productivity by infecting fed-batch cultures at high cell densities. Four commercial and one in-house developed serum-free media were first tested for supporting growth of HEK 293 cells and production of adenovirus type 5 (Ad5) in batch culture. Two best media were then selected for development of fed-batch culture to improve cell growth and virus productivity. A maximum viable cell density up to 16 × 106 cells/mL was achieved in shake flask fed-batch cultures using the selected media and commercial or in-house developed feeds. The volumetric virus productivity was improved by up to six folds, reaching 3.0 × 1010 total viral particles/mL in the fed-batch culture cultivated with the media and feeds developed in house and infected at a cell density of 5 × 106 cells/mL. Additional rounds of optimization of media and feed were required to maintain the improved titer when the fed-batch culture was scaled up in a bench scale (3 L) bioreactor. Overall, the results suggested that fed-batch culture is a simple and feasible process to significantly improve the volumetric productivity of Ad5 through optimization and balance of nutrients in culture media and feeds.
更多
查看译文
关键词
adenovirus,HEK 293 cells,fed-batch culture,feeding strategy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要