Prevalence of a growth mindset among introductory astronomy students

Moire K. M. Prescott,Laura Madson, Sandra M. Way, Kelly N. Sanderson

Physical Review Physics Education Research(2024)

引用 0|浏览0
暂无评分
摘要
While many previous studies have indicated that encouraging a growth mindset can improve student learning outcomes, this conclusion’s applicability to college-level astronomy classrooms remains poorly understood owing to the variation in students’ overall and domain-specific learning attitudes. To address this, we surveyed undergraduate students in an introductory astronomy class about their attitudes towards learning astronomy over the course of five semesters. Overall, students felt an affinity for astronomy, felt moderately competent, perceived astronomy to be intermediate in terms of difficulty, and agreed strongly with standard statements reflecting a “growth mindset,” i.e., the belief that intelligence is malleable rather than fixed from birth. Their responses were stable over the course of the semester and did not appear to depend strongly on student demographics. The unexpected start of the COVID-19 pandemic and the associated shift to all-virtual learning correlated with a drop in their affinity for astronomy, a small decrease in their perceived competence, and an increase in the perceived difficulty of the topic. Their overall learning mindset showed negligible change during this time, emphasizing the stability of their belief in a growth mindset as compared to other measured learning attitudes. However, more nuanced questions about their behaviors and interpretations in the classroom, about how they felt “in the moment,” and about what factors were most important for their success in the class revealed significantly lower alignment with a growth mindset. This suggests that while introductory astronomy students may believe that they have a growth mindset, this mindset is not necessarily reflected in their self-reported classroom behaviors or measured responses to actual learning challenges. Published by the American Physical Society 2024
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要