Unveiling a Microexon Switch: Novel Regulation of the Activities of Sugar Assimilation and Plant-Cell-Wall-Degrading Xylanases and Cellulases by Xlr2 in Trichoderma virens.

Cynthia Coccet Castañeda-Casasola,María Fernanda Nieto-Jacobo, Amanda Soares, Emir Alejandro Padilla-Padilla, Miguel Angel Anducho-Reyes,Chris Brown,Sereyboth Soth,Edgardo Ulises Esquivel-Naranjo,John Hampton,Artemio Mendoza-Mendoza

International journal of molecular sciences(2024)

引用 0|浏览0
暂无评分
摘要
Functional microexons have not previously been described in filamentous fungi. Here, we describe a novel mechanism of transcriptional regulation in Trichoderma requiring the inclusion of a microexon from the Xlr2 gene. In low-glucose environments, a long mRNA including the microexon encodes a protein with a GAL4-like DNA-binding domain (Xlr2-α), whereas in high-glucose environments, a short mRNA that is produced encodes a protein lacking this DNA-binding domain (Xlr2-β). Interestingly, the protein isoforms differ in their impact on cellulase and xylanase activity. Deleting the Xlr2 gene reduced both xylanase and cellulase activity and growth on different carbon sources, such as carboxymethylcellulose, xylan, glucose, and arabinose. The overexpression of either Xlr2-α or Xlr2-β in T. virens showed that the short isoform (Xlr2-β) caused higher xylanase activity than the wild types or the long isoform (Xlr2-α). Conversely, cellulase activity did not increase when overexpressing Xlr2-β but was increased with the overexpression of Xlr2-α. This is the first report of a novel transcriptional regulation mechanism of plant-cell-wall-degrading enzyme activity in T. virens. This involves the differential expression of a microexon from a gene encoding a transcriptional regulator.
更多
查看译文
关键词
alternative splicing,cellulase,microexons,plant symbiosis,solid-state fermentation (SSF),submerged fermentation (SmF)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要