(p)ppGpp and DksA play crucial role in reducing the efficacy of b-lactam antibiotics by modulating bacterial membrane permeability

crossref(2024)

Cited 0|Views7
No score
Abstract
The key signaling molecules in the bacterial stress sensing pathway, the alarmone (p)ppGpp and transcription factor DksA, help in survival during nutritional deprivation and exposure to xenobiotics by modulating cellular metabolic pathways. In Vibrio cholerae, (p)ppGpp metabolism is solely linked with the functions of three proteins: RelA, SpoT, and RelV. At threshold or elevated concentrations of (p)ppGpp, the level of cellular metabolites and proteins in the presence and absence of DksA in V. cholerae and other bacteria has not yet been comprehensively studied. We engineered the genome of V. cholerae to develop DksA null mutants in the presence and absence of (p)ppGpp biosynthetic enzymes. We observed a higher sensitivity of the (p)ppGpp0ΔdksA V. cholerae mutant to different β-lactam antibiotics compared to the wild-type (WT) strain. Our whole-cell metabolomic and proteome analysis revealed that the cell membrane and peptidoglycan biosynthesis pathways are significantly altered in the (p)ppGpp0, ΔdksA, and (p)ppGpp0ΔdksA V. cholerae strains. Further, the mutant strains displayed enhanced inner and outer membrane permeability in comparison to the WT strains. These results directly correlate with the tolerance and survival of V. cholerae to β-lactam antibiotics. These findings may help in the development of adjuvants for β-lactam antibiotics by inhibiting the functions of stringent response modulators.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined