Radiofrequency ablation-Real-time visualization of lesions and their correlation with underlying parameters.

Pacing and clinical electrophysiology : PACE(2024)

引用 0|浏览5
暂无评分
摘要
BACKGROUND:Lesion durability and transmurality are crucial for successful radiofrequency (RF) ablation. This study provides a model of real-time RF lesion visualization and insights into the role of underlying parameters, as local impedance (LI). METHODS:A force-sensing, LI-sensing catheter was used for lesion creation in an ex vivo model involving cross-sections of porcine cardiac preparations. During 60 s of RF application, one measurement per second was performed regarding lesion size and available ablation parameters. In total, 1847 measurements from n = 36 lesions were performed. Power (20-50 W) and contact force (1-5 g, 10-15 g, 20-25 g) were systematically alternated. RESULTS:Lesion formation was most prominent in the first seconds of RF application during which nonlinear lesion growth was observed (max. 1.08 mm/s for lesion depth and 2.71 mm/s for lesion diameter). Power levels determined the extent of lesion formation in the early phase. After 20 s, lesion size growth velocity approaches 0.1 mm/s at all power levels. LI changes were also highest in the first seconds (up to - 12 Ω/s) and decreased to less than - 0.1Ω/s after prolonged application. CONCLUSION:Lesion formation in irrigated RF ablation is a nonlinear process. Final lesion size resulting from an RF application is mainly influenced by high rates of lesion growth in the first seconds of ablation. LI seems to be a good surrogate for differentiating changes in lesion formation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要