Mitral Annular Tissue Velocity Predicts Survival in Patients With Primary Mitral Regurgitation.

Korean circulation journal(2024)

Cited 0|Views8
No score
Abstract
BACKGROUND AND OBJECTIVES:Early diastolic mitral annular tissue (e') velocity is a commonly used marker of left ventricular (LV) diastolic function. This study aimed to investigate the prognostic implications of e' velocity in patients with mitral regurgitation (MR). METHODS:This retrospective cohort study included 1,536 consecutive patients aged <65 years with moderate or severe chronic primary MR diagnosed between 2009 and 2018. The primary and secondary outcomes were all-cause and cardiovascular mortality, respectively. According to the current guidelines, the cut-off value of e' velocity was defined as 7 cm/s. RESULTS:A total of 404 individuals were enrolled (median age, 51.0 years; 64.1% male; 47.8% severe MR). During a median 6.0-year follow-up, there were 40 all-cause mortality and 16 cardiovascular deaths. Multivariate analysis revealed a significant association between e' velocity and all-cause death (adjusted hazard ratio [aHR], 0.770; 95% confidence interval [CI], 0.634-0.935; p=0.008) and cardiovascular death (aHR, 0.690; 95% CI, 0.477-0.998; p=0.049). Abnormal e' velocity (≤7 cm/s) independently predicted all-cause death (aHR, 2.467; 95% CI, 1.170-5.200; p=0.018) and cardiovascular death (aHR, 5.021; 95% CI, 1.189-21.211; p=0.028), regardless of symptoms, LV dimension and ejection fraction. Subgroup analysis according to sex, MR severity, mitral valve replacement/repair, and symptoms, showed no significant interactions. Including e' velocity in the 10-year risk score improved reclassification for mortality (net reclassification improvement [NRI], 0.154; 95% CI, 0.308-0.910; p<0.001) and cardiovascular death (NRI, 1.018; 95% CI, 0.680-1.356; p<0.001). CONCLUSIONS:In patients aged <65 years with primary MR, e' velocity served as an independent predictor of all-cause and cardiovascular deaths.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined