A novel RCACycleGAN model is proposed for the high-precision reconstruction of sparse TFM images

Zhouteng Liu, Liming Li,Wenfa Zhu,Yanxun Xiang,Guopeng Fan,Hui Zhang

Insight - Non-Destructive Testing and Condition Monitoring(2024)

引用 0|浏览1
暂无评分
摘要
The sparse total focusing method (TFM) has been shown to enhance the computational efficacy of ultrasound imaging but the image quality of ultrasound regrettably deteriorates with an increase in the sparsity rate of array elements. Deep learning has made remarkable advancements in image processing and cycle-consistent generative adversarial networks (CycleGANs) have been extensively employed to reconstruct diverse image categories. However, due to the incomplete extraction of image feature information by the generator and discriminator in a CycleGAN, high-quality sparse TFM images cannot be directly reconstructed using CycleGANs. There is also a risk of losing crucial feature information related to minor defects. As a result, this paper modifies the generator and discriminator in the CycleGAN to construct a new relativistic discriminator and coordinate attention CycleGAN (RCACycleGAN) model, which enables high-precision reconstruction of sparse TFM images. The addition of the coordinate attention module to the CycleGAN enhances the defective feature representation by fully considering the channel and spatial correlation between regions and using the fusion of spatially perceived feature maps in different directions. It solves the problem of easy loss of defective key feature information. The relativistic discriminator replaces the PatchGAN discriminator in the CycleGAN and evaluates the quality of both real and sparse TFM reconstructed images to ensure a relative image quality evaluation. This process solves the problem of unstable image quality of the sparse TFM reconstructed image. Experimental results demonstrate that RCACycleGAN can stably reconstruct sparse TFM images even in small sample dataset scenarios. The proposed network model reconstructs images with better accuracy, including in terms of structural similarity, defect roundness and area, and has a shorter training time than several existing network models.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要