Chrome Extension
WeChat Mini Program
Use on ChatGLM

An Efficient Finite Difference Approximation via a Double Sample-Recycling Approach

CoRR(2024)

Cited 0|Views5
No score
Abstract
Estimating stochastic gradients is pivotal in fields like service systems within operations research. The classical method for this estimation is the finite difference approximation, which entails generating samples at perturbed inputs. Nonetheless, practical challenges persist in determining the perturbation and obtaining an optimal finite difference estimator in the sense of possessing the smallest mean squared error (MSE). To tackle this problem, we propose a double sample-recycling approach in this paper. Firstly, pilot samples are recycled to estimate the optimal perturbation. Secondly, recycling these pilot samples again and generating new samples at the estimated perturbation, lead to an efficient finite difference estimator. We analyze its bias, variance and MSE. Our analyses demonstrate a reduction in asymptotic variance, and in some cases, a decrease in asymptotic bias, compared to the optimal finite difference estimator. Therefore, our proposed estimator consistently coincides with, or even outperforms the optimal finite difference estimator. In numerical experiments, we apply the estimator in several examples, and numerical results demonstrate its robustness, as well as coincidence with the theory presented, especially in the case of small sample sizes.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined