Spin polarization in Fe-doped CsPbBr3 perovskite nanocrystals for enhancing photocatalytic CO2 reduction

Tae Hyung Kim, Kayoung Cho, Su Hwan Lee,Jun Hyeok Kang,Ho Bum Park, JaeHong Park, Young-Hoon Kim

Chemical Engineering Journal(2024)

引用 0|浏览2
暂无评分
摘要
Spin manipulation offers an effective strategy to enhance photocatalytic activity in metal halide perovskites by suppressing the recombination of photo-excited electrons. However, the scope of the magnetic dopant inducing spin polarization is still limited. Here, we introduce synergetic strategies to polarize the spin in photo-excited electrons and boost their photocatalytic activity for CO2 reduction. We dope iron cation (Fe2+) into CsPbBr3 perovskite nanocrystals (PNCs). Fe ions induce paramagnetism, fostering spin polarization within the Fe-doped CsPbBr3 PNCs (Fe-CsPbBr3 PNCs) under magnetic fields. The magnetic compositions in PNC tend to stabilize the spin polarized electrons within the PNC, mitigate the recombination of photo-excited electrons and enhance the redox reaction for photocatalytic CO2 reduction. The synergistic effects of magnetic element doping and the application of magnetic fields resulted in a photocatalytic CO2 reduction of 133.04 g−1, which is 1.68-fold increase compared to the Fe-PNC without a magnetic field. This work provides a simple and environmentally friendly approach to CO2 reduction based on PNCs.
更多
查看译文
关键词
Photocatalyst,CO2 reduction,Spin polarization,Magnetic field,Iron doping
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要