The eastern Mediterranean pre-MSC brine pool as an analogue for future subtropical hydroclimate

crossref(2021)

Cited 0|Views4
No score
Abstract
<p>During the Late Miocene the Mediterranean Sea experienced severe disruption of its connectivity to the Atlantic Ocean, highlighted by a rapid sea-level drop, culminating to the Messinian Salinity Crisis (MSC; 5.97-5.33 Ma). Such a paleoceanographic change, triggered by the cumulative effect of climate and tectonics, caused high-amplitude fluctuations in the hydrology of the entire basin, and further influenced the geological history of the Mediterranean Sea. Although a consistent pattern of the paleoclimate has started to emerge, we currently lack a continuous sea surface salinity (SSS) record linking the timing of sea surface temperature (SST) variations, sea-level fluctuations, and the overall environmental change, particularly for the pre-evaporitic period. Initial viewpoints of a linear and gradual salinity increase prior to the onset of the MSC have been recently revised and replaced by highly variable salinity-related patterns representative of the stepwise restriction of the Mediterranean Sea. Here we use the combined Tetra Ether (TEX<sub>86</sub>-) and/or alkenone unsaturation ratio (U<sup>K&#8242;</sup><sub>37</sub>) based SSTs and oxygen isotopes (&#948;<sup>18</sup>O) from the cyclic marl-sapropel sedimentary succession of Agios Myron section (north-central Crete, Greece) to assess hydroclimate changes during that time, and we finally present the first record of SSS in the eastern Mediterranean Sea for the earliest Messinian (7.2&#8211;6.5 Ma). The relatively stable marine conditions after the Tortonian/Messinian boundary, expressed through a cool and fresh upper water column, significantly changed at &#8764;6.9 Ma, when an important reversal in the heart of the Messinian cooling trend supplemented by a coherent hypersaline water column took place. The observed SST and SSS patterns provide context for a two-fold evolution of this event (centered at 6.9&#8211;6.8 and 6.72 Ma), which finally led to the onset of a brine pool into the eastern Mediterranean basin. The transitional character of the following time interval (6.7&#8211;6.5 Ma) marks another important step in the basin restriction with a wider range of salinity fluctuations from highly saline to diluted conditions and enhanced water column stratification prior to the deposition of evaporites. Overall, this evolution supports the concept of a stepwise restriction of the Mediterranean Sea associated with substantial hydroclimate variability and increasing environmental (thermal and salinity) stress, and further confirms its position as a preferred laboratory for developing new conceptual models in paleoceanography, allowing the investigation and scale assessment of a phenomenon with high chances of representing a future analogue scenario.</p>
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined