5G assisted GNSS precise point positioning ambiguity resolution

Journal of Geodesy(2024)

Cited 0|Views0
No score
Abstract
This study proposes a model using 5G time-of-arrival data to assist global navigation satellite system precise point positioning ambiguity resolution. Specifically, the model addresses the problem of PPP requiring a long convergence time in partially satellite-occluded GNSS environments, such as urban canyons. First, we apply the ionosphere-free PPP model to estimate uncalibrated phase delays. Next, we combine real 5G data with GNSS data to determine whether introducing 5G observations will decrease the convergence time of the PPP solution. Experimental results reveal that the 5G-assisted PPP model can effectively improve the convergence efficiency of the float solution, lower the fixed time, and achieve greater positional reliability. Notably, the combination of GPS, BDS, and 5G with a sampling interval of 1 s obtains a fixed solution in an average of 1.12 min. Moreover, 5G-assisted GNSS positioning effectively compensates for partial satellite occlusion, optimizes the PDOP value, and speeds up ambiguity fixing. The introduction of three and more 5G base stations helps to obtain fixed solutions within 9 min when it is difficult to obtain fixed solutions relying only on GNSS. Our findings have important implications for improving the widespread applicability and effectiveness of satellite-based navigation systems in light of increasing urbanization and the rise of signal-occluding environments.
More
Translated text
Key words
5G,Global navigation satellite system,Precise point positioning,Uncalibrated phase delay,Ambiguity resolution,Convergence time
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined