Uncertainty Computation at Finite Distance in Nonlinear Mixed Effects Models—a New Method Based on Metropolis-Hastings Algorithm

Mélanie Guhl,Julie Bertrand, Lucie Fayette,François Mercier,Emmanuelle Comets

The AAPS Journal(2024)

引用 0|浏览0
暂无评分
摘要
The standard errors (SE) of the maximum likelihood estimates (MLE) of the population parameter vector in nonlinear mixed effect models (NLMEM) are usually estimated using the inverse of the Fisher information matrix (FIM). However, at a finite distance, i.e. far from the asymptotic, the FIM can underestimate the SE of NLMEM parameters. Alternatively, the standard deviation of the posterior distribution, obtained in Stan via the Hamiltonian Monte Carlo algorithm, has been shown to be a proxy for the SE, since, under some regularity conditions on the prior, the limiting distributions of the MLE and of the maximum a posterior estimator in a Bayesian framework are equivalent. In this work, we develop a similar method using the Metropolis-Hastings (MH) algorithm in parallel to the stochastic approximation expectation maximisation (SAEM) algorithm, implemented in the saemix R package. We assess this method on different simulation scenarios and data from a real case study, comparing it to other SE computation methods. The simulation study shows that our method improves the results obtained with frequentist methods at finite distance. However, it performed poorly in a scenario with the high variability and correlations observed in the real case study, stressing the need for calibration.
更多
查看译文
关键词
finite distance,Metropolis-Hastings,nonlinear mixed effect models,standard errors,uncertainty
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要