Techno-Economic Assessment of Solar-Grid-Battery Hybrid Energy Systems for Grid-Connected University Campuses in Kenya

ELECTRICITY(2024)

Cited 0|Views1
No score
Abstract
This paper presents the techno-economic feasibility of using grid-connected PV hybrid systems to supply power in large grid-dependent academic institutions. The study was conducted using the administration building of Moi University in Kenya. The power consumption profile of the building was collected using a PCE-360 power analyzer. The peak load demand was found to be 60 kW. Using random variability constants of 4% for day-to-day and 4% time-step load variability, a peak demand of 70.58 kW was obtained, which was used in our simulation. The solar radiation and temperature data for this site were collected from the weather station of the university. The hybrid system was simulated using HOMER Pro software. It was found from the simulation results that the optimal system was the solar PV/grid without battery storage, which had a levelized cost of energy (LCOE) of KSH 8.78/kWh (USD 0.072), net present cost (NPC) of KSH 27,974,492 (USD 230,813), capital expenditure (CAPEX) of KSH 26,300,000 (USD 216,997), and a simple payback period (SPBP) of 5.08 years for a 25-year life span. This system, when compared to the existing grid, showed an 83.94% reduction in the annual electricity bill of the administration building. These results demonstrate a reduction in energy cost by a renewable energy fraction of 67.1%.
More
Translated text
Key words
renewable energy,cost of energy,hybrid systems,green campus,solar PV
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined