Mixing mechanism of power-law non-Newtonian fluids in resonant acoustic mixing

PHYSICS OF FLUIDS(2024)

引用 0|浏览0
暂无评分
摘要
Resonant acoustic mixing (RAM) is a widely applied technology that utilizes low-frequency vertical harmonic vibration for fluid transfer and mixing. However, the current research on the mixing mechanism of RAM technology primarily focuses on the initial mixing stages, neglecting the subsequent turbulent transition. This lack of understanding hinders the further improvement of RAM technology. This paper aims to investigate the mixing mechanism of power-law non-Newtonian fluids (NNF) in RAM using the phase field model and the spectral analysis. The study focuses on understanding the facilitating effect of turbulent transition in mixing and explores the influence of the power-law index and the excitation parameter on the mixing characteristics. The results indicate that the flow field experiences Faraday instability due to the intense perturbation during transient mixing. This leads to the fluid mixing through the development of large-scale vortex to small-scale vortex. During this process, the frequency components of the flow field are distributed around the working frequency, demonstrating transient and broad frequency characteristics. The steady state then dissipates energy through the viscous dissipation of small-scale vortices and ultimately relies on the single-frequency components such as submultiples and multiples excited by the nonlinear effect to complete the mixing. The mixing effects of NNF and Newtonian fluids (NF) are essentially the same, but they consume energy in different ways. The mixing uniformity and mixing efficiency of NNF increase with increasing vibration acceleration and decrease with increasing vibration frequency. These findings provide new insights into the RAM mechanism of power-law NNF.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要