Chrome Extension
WeChat Mini Program
Use on ChatGLM

Predicting Dynamic Contact Stresses at Crosstie-Ballast Interface Based on Basic Train Characteristics

JOURNAL OF TRANSPORTATION ENGINEERING PART A-SYSTEMS(2024)

Cited 0|Views1
No score
Abstract
Understanding fundamental track behaviors under dynamic load conditions is important to optimize design practices and achieve high-quality track performance. The American Railway Engineering and Maintenance-of-Way Association provides recommended practices to estimate trackbed pressures, which are primarily based on the Talbot equations. The Talbot methodology for computing crosstie-ballast (CT-B) interfacial pressures may "not" be valid for modern railroad design due to several factors, including the sensitivity of pressure measuring equipment, the presence of uneven support conditions, and the implementation of jointed rails in testing different wheel loadings, which contributed to overestimation of pressure readings as a result of impact loading. However, modern railroad infrastructure has been designed with a smooth track layout and well-supported rails as well as incorporating rolling stock equipped with smooth wheels, particularly in high-speed train operations. This study proposes a new approach to estimate the pressures at the CT-B interface, which was developed using measured in-track CT-B interfacial pressures taken from an active mainline. The data from the in-track measurements were filtered by using a signal processing tool and analyzed to develop basic equations to predict interfacial pressures as a function of basic train characteristics, including train speed, wheel loads, and wheel spacing, assuming no impact loading from wheel defects. To validate the efficacy of the square wave theory, the predicted pressures were compared with the data obtained from in-track tests. Further, a method to estimate dynamic pressures of a moving train at the CT-B interface was developed using square wave theory. By representing the vehicles of a train as a periodic square waveform, the dynamic CT-B interfacial pressures can be predicted for an unlimited number of locomotives and cars for smooth track geometry, smooth wheels, limited rail surface roughness, and well-supported track.
More
Translated text
Key words
Railroad,Trackbed pressure,Dynamic contact stresses,Square wave theory,Crosstie,Ballast
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined