Numerical investigation of cavitating flow behind the cone of a poppet valve in water hydraulic system

Journal of Zhejiang University Science(2002)

引用 26|浏览2
暂无评分
摘要
Computational Fluid Dynamics (CFD) simulations of cavitating flow through water hydraulic poppet valves were performed using advanced RNG k -epsilon turbulence model. The flow was turbulent, incompressible and unsteady, for Reynolds numbers greater than 43000. The working fluid was water, and the structure of the valve was simplified as a two dimensional axisymmetric geometrical model. Flow field visualization was numerically achieved. The effects of inlet velocity, outlet pressure, opening size as well as poppet angle on cavitation intensity in the poppet valve were numerically investigated. Experimental flow visualization was conducted to capture cavitation images near the orifice in the poppet valve with 30° poppet angle using high speed video camera. The binary cavitating flow field distribution obtained from digital processing of the original cavitation image showed a good agreement with the numerical result.
更多
查看译文
关键词
Water, Hydraulic poppet valve, Cavitating flow field, Numerical simulation, A, TH137
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要