In Situ Growth of Wafer-Scale Patterned Graphene and Fabrication of Optoelectronic Artificial Synaptic Device Array Based on Graphene/n-AlGaN Heterojunction for Visual Learning

SMALL(2024)

引用 0|浏览6
暂无评分
摘要
The unique optical and electrical properties of graphene-based heterojunctions make them significant for artificial synaptic devices, promoting the advancement of biomimetic vision systems. However, mass production and integration of device arrays are necessary for visual imaging, which is still challenging due to the difficulty in direct growth of wafer-scale graphene patterns. Here, a novel strategy is proposed using photosensitive polymer as a solid carbon source for in situ growth of patterned graphene on diverse substrates. The growth mechanism during high-temperature annealing is elucidated, leading to wafer-scale graphene patterns with exceptional uniformity, ideal crystalline quality, and precise control over layer number by eliminating the release of volatile from oxygen-containing resin. The growth strategy enables the fabrication of two-inch optoelectronic artificial synaptic device array based on graphene/n-AlGaN heterojunction, which emulates key functionalities of biological synapses, including short-term plasticity, long-term plasticity, and spike-rate-dependent plasticity. Moreover, the mimicry of visual learning in the human brain is attributed to the regulation of excitatory and inhibitory post-synapse currents, following a learning rule that prioritizes initial recognition before memory formation. The duration of long-term memory reaches 10 min. The in situ growth strategy for patterned graphene represents the novelty for fabricating fundamental hardware of an artificial neuromorphic system. The in situ growth of wafer-scale graphene patterns on diverse substrates is proposed by using photosensitive polymer as a solid carbon source. It enables graphene/n-AlGaN heterojunction for the fabrication of optoelectronic artificial synaptic device array, which can mimic key functionalities of biological synapses, also revealing the visual learning ability like that of a human brain. image
更多
查看译文
关键词
artificial synaptic device,in situ growth,n-AlGaN,patterned graphene,visual learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要