Charge separation control in organic photosensitizers for photocatalytic water splitting without sacrificial electron donors

Journal of Catalysis(2024)

引用 0|浏览1
暂无评分
摘要
Photocatalytic hydrogen evolution reaction (photoHER) is one of the most promising approaches towards production of “green” hydrogen. Currently, the state-of-the-art photoHER systems require the use of sacrificial electron donors (SED), because of inefficient charge separation in photosensitizers and thermodynamically challenging water oxidation by the same catalyst. Here, we present a molecular design approach for all-organic photosensitizers with effective intramolecular charge separation, microsecond lifetime of excited states, controllable direction of electron transfer, and ability to oxidize water for recovery of the photocatalytic system to its initial state. Such photosensitizers comprise weakly conjugated strong electron donor and acceptor what enables charge transfer during the light absorption. The excitation energy is stored in long-living triplet states, whose lifetime can be monitored by the thermally activated delayed fluorescence. Additionally, application of heavy-atom effect helps not only to increase the population of triplet state but also to increase its stability and lifetime. When such photosensitizers are attached to the platinized TiO2, efficient photoHER catalysts are obtained which produce H2 under irradiation with sunlight. In the presence of SED, the highest turnover number after 24 h (TON24h) of such systems exceed 3500, whilst in pure water without any SED, TON24h reaches 2000. Our best system performs photocatalytic SED-free water-splitting for 48 h keeping 100 % of its activity and constant turnover frequency of 26 h−1. The described here investigations reveal that water splitting can be performed by a simple three component system “photosensitizer|TiO2|Pt” under specific control of 1) the charge separation and its direction, 2) intersystem crossing rate and triplet state lifetime, and 3) favorable water oxidation thermodynamics within a photosensitizer together with 4) appropriate alignment of energy levels to the catalyst.
更多
查看译文
关键词
Photocatalytic hydrogen evolution reaction (photoHER),Photosensitizer,Charge separation,Water-splitting
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要