On-ground calibration of the X-ray, gamma-ray, and relativistic electron detector onboard TARANIS

Yuuki Wada,Philippe Laurent, Damien Pailot,Ion Cojocari, Eric Bréelle, Stéphane Colonges, Jean-Pierre Baronick,François Lebrun,Pierre-Louis Blelly, David Sarria,Kazuhiro Nakazawa, Miles Lindsey Clark

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
We developed the X-ray, Gamma-ray and Relativistic Electron detector (XGRE) onboard the TARANIS satellite, to investigate high-energy phenomena associated with lightning discharges such as terrestrial gamma-ray flashes and terrestrial electron beams. XGRE consisted of three sensors. Each sensor has one layer of LaBr_3 crystals for X-ray/gamma-ray detections, and two layers of plastic scintillators for electron and charged-particle discrimination. Since 2018, the flight model of XGRE was developed, and validation and calibration tests, such as a thermal cycle test and a calibration test with the sensors onboard the satellite were performed before the launch of TARANIS on 17 November 2020. The energy range of the LaBr_3 crystals sensitive to X-rays and gamma rays was determined to be 0.04-11.6 MeV, 0.08-11.0 MeV, and 0.08-11.3 MeV for XGRE1, 2, and 3, respectively. The energy resolution at 0.662 MeV (full width at half maximum) was to be 20.5 calibration test were then used to validate a simulation model of XGRE and TARANIS. By performing Monte Carlo simulations with the verified model, we calculated effective areas of XGRE to X-rays, gamma rays, electrons, and detector responses to incident photons and electrons coming from various elevation and azimuth angles.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要