Accelerated Engineering of ELP-based Materials through Hybrid Biomimetic-De Novo Predictive Molecular Design.

Timo Laakko, Antti Korkealaakso, Burcu Firatligil Yildirir,Piotr Batys,Ville Liljeström, Ari Hokkanen, Nonappa, Merja Penttilä, Anssi Laukkanen, Ali Miserez, Caj Södergård,Pezhman Mohammadi

Advanced materials (Deerfield Beach, Fla.)(2024)

引用 0|浏览2
暂无评分
摘要
Efforts to engineer high-performance protein-based materials inspired by nature have mostly focused on altering naturally occurring sequences to confer the desired functionalities, whereas de novo design lags significantly behind and calls for unconventional innovative approaches. Here, using partially disordered elastin-like polypeptides (ELPs) as initial building blocks we show that de novo engineering of protein materials can be accelerated through hybrid biomimetic design, which we achieve by integrating computational modeling, deep neural network, and recombinant DNA technology. This generalizable approach involves incorporating a series of de novo-designed sequences with α-helical conformation and genetically encoding them into biologically inspired intrinsically disordered repeating motifs. The new ELP variants maintained structural conformation and showed tunable supramolecular self-assembly out of thermal equilibrium with phase behavior in vitro. We illustrate the effective translation of the predicted molecular designs in structural and functional materials. The proposed methodology can be applied to a broad range of partially disordered biomacromolecules and potentially pave the way toward the discovery of novel structural proteins. This article is protected by copyright. All rights reserved.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要