Durability of concrete-encapsulated GFRP bars subjected to seawater immersion

Jia-Hui Sun, Nian-Jiu Su, Zhou-Qiong He, Rui-Xin Jia,Yue Liu, Fu-Kuan Lin, Thierno Aliou Ka

CASE STUDIES IN CONSTRUCTION MATERIALS(2024)

引用 0|浏览1
暂无评分
摘要
Glass fiber reinforce polymer (GFRP) bars have better durability than traditional steel bars, but there are few studies on their long-term performance in actual service environments especially the marine environment. To investigate the durability of GFRP bars used in cross-sea bridges, this research delves into the performance of 132 such bars, spanning diameters of 10, 12, 16, and 25 mm, in an environment that closely mimics real-world condition. The GFRP bars, encapsulated in concrete, were submerged in seawater solution, maintained at either room temperature or 60 degrees C, for periods spanning from 0 to 183 days. Then the tensile strength and elastic modulus degradation of GFRP bars were investigated by tensile tests. Scanning electron microscope (SEM) was also used to analyze the micro-degradation mechanism of GFRP bars. In addition, this paper compares the four existing models for predicting long-term mechanical properties of GFRP bars with the experimental data, so as to determine the formulas and methods to be used in the design. The result shows that the elastic modulus of GFRP bars after 183 days of immersion in concrete pore solution was almost unchanged while the tensile strength decreased significantly. Among them, the tensile strength of 10 mm diameter GFRP bars decreased by 41.52 %, after 183 days of immersion at high temperature (60 degrees C). The SEM method revealed that the main cause of such phenomena was the weakening of the bond between the fibers and matrix, which led to a decrease in the interface property. Finally, by fitting and comparing the relationship between the test data and the existing prediction models for the long-term mechanical properties of GFRP bars, the residual tensile strength of GFRP bars used in the actual project of Yanzhou Bridge for 100 years was predicted according to the optimal prediction model, i.e. the Serb model, and the results showed that the residual strength of GFRP bars is able to meet the current standard requirement.
更多
查看译文
关键词
GFRP bar,Durability,Concrete -encapsulated,Seawater,Prediction model
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要