Neural Network Enhanced Single-Photon Fock State Tomography

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Even though heralded single-photon sources have been generated routinely through the spontaneous parametric down conversion, vacuum and multiple photon states are unavoidably involved. With machine-learning, we report the experimental implementation of single-photon quantum state tomography by directly estimating target parameters. Compared to the Hanbury Brown and Twiss (HBT) measurements only with clicked events recorded, our neural network enhanced quantum state tomography characterizes the photon number distribution for all possible photon number states from the balanced homodyne detectors. By using the histogram-based architecture, a direct parameter estimation on the negativity in Wigner's quasi-probability phase space is demonstrated. Such a fast, robust, and precise quantum state tomography provides us a crucial diagnostic toolbox for the applications with single-photon Fock states and other non-Gaussisan quantum states.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要