谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Selective Photoreforming of Waste Plastics into Diesel Olefins via Single Reactive Oxygen Species.

Angewandte Chemie (International ed. in English)(2024)

引用 0|浏览8
暂无评分
摘要
The accumulation of plastic waste poses a pressing environmental challenge. Catalytic conversion stands out as an ideal approach for plastics upcycling, particularly through solar-driven plastics photoreforming. However, due to the common effects of multiple reactive oxygen species (ROS), selectively generating high-value chemicals becomes challenging. In this study, we developed a universal strategy to achieve >85 % selective production of diesel olefins (C15-C28) from polyolefin waste plastics via single ROS. Using tetrakis (4-carboxyphenyl) porphyrin supramolecular (TCPP) with different central metals as an example to regulate single ROS generation, results show Ni-TCPP facilitates triplet exciton production, yielding 1O2, while Zn-TCPP generates ⋅O2 - due to its strong built-in electric field (IEF). 1O2 directly dechlorinates polyvinyl chloride (PVC) due to the electro-negativity of chlorine atoms and the low dissociation energy of C-Cl bonds, while ⋅O2 - promotes direct dehydrogenation of polyethylene (PE) due to the electro-positivity of hydrogen atoms and the high dissociation energy of C-H bonds. This method is universally applicable to various single ROS systems. Installation experiments further affirm the application potential, achieving the highest diesel olefin production of 76.1 μmol h-1. Such a universally adaptive approach holds promise for addressing the global plastic pollution problem.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要