Dynamically constructing robust cathode-electrolyte-interphase on nickel-rich cathode by organic boron additive for high-performance lithium-ion batteries

Chemical Engineering Journal(2024)

Cited 0|Views7
No score
Abstract
Nickel-rich ternary cathode materials LiNi0.8Co0.1Mn0.1O2 (NCM811) have attracted broad attention due to their high voltage and high energy density for lithium-ion batteries. However, rapid capacity decay due to unstable particle surface inhibit the application. Artificial cathode electrolyte interface (CEI) is undoubtedly a more effective and simpler way to solve this issue. Here, stable and highly conductive in situ CEI is designed using a low-cost organic boron additive isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (ITD). Higher occupied molecular orbital energy endows ITD ability to participate in forming CEI. ITD-contained CEI can reduce nickel dissolving, resulting in a lower self-discharge rate, which is benefit from the uniform and stable CEI on the NCM811 surface. As expected, ITD-based CEI can restrain NCM811crystal cracking in Li||NCM811 half batteries, improving capacity retention from 29.4 % to 93.0 % after 200 cycles at 1C (1C = 200 mA g−1). It is worth mentioning that ITD–derived CEI is conducive to ion migration, which improve the rate capacity retention from 91.5 % to 95.5 %.
More
Translated text
Key words
Lithium-ion batteries,Nickel-rich cathode,Cathode electrolyte interface,Organic boron additive
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined