谷歌浏览器插件
订阅小程序
在清言上使用

Inhibition of QDPR synergistically modulates intracellular tetrahydrobiopterin profiles in cooperation with methotrexate

Biochemical and Biophysical Research Communications(2024)

引用 0|浏览5
暂无评分
摘要
Tetrahydrobiopterin (BH4) is an essential cofactor for dopamine and serotonin synthesis in monoaminergic neurons, phenylalanine metabolism in hepatocytes, and nitric oxide synthesis in endothelial and immune cells. BH4 is consumed as a cofactor or is readily oxidized by autooxidation. Quinonoid dihydropteridine reductase (QDPR) is an enzyme that reduces quinonoid dihydrobiopterin (qBH2) back to BH4, and we have previously demonstrated the significance of QDPR in maintaining BH4 in vivo using Qdpr-KO mice. In addition to the levels of BH4 in the cells, the ratios of oxidized to reduced forms of BH4 are supposed to be important for regulating nitric oxide synthase (NOS) via the so-called uncoupling of NOS. However, previous studies were limited due to the absence of specific and high-affinity inhibitors against QDPR. Here, we performed a high-throughput screening for a QDPR inhibitor and identified Compound 9b with an IC50 of 0.72 μM. To understand the inhibition mechanism, we performed kinetic analyses and molecular dynamics simulations. Treatment with 9b combined with methotrexate (MTX), an inhibitor of another BH4-reducing enzyme, dihydrofolate reductase (DHFR), significantly oxidized intracellular redox states in HepG2, Jurkat, SH-SY5Y, and PC12D cells. Collectively, these findings suggest that 9b may enhance the anticancer and anti-autoimmune effects of MTX.
更多
查看译文
关键词
Quinonoid dihydropteridine reductase inhibitor,high-throughput screening,tetrahydrobiopterin,methotrexate
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要