Predictions of Immunodominant Epitope Peptides From the AsaA Type VI Secretion System in Acinetobacter baumannii: A Computational Approach.

Cureus(2024)

引用 0|浏览3
暂无评分
摘要
Introduction Acinetobacter baumannii, designated as a priority pathogen by the World Health Organization (WHO), is responsible for recalcitrant infections in immunocompromised patients. The type VI secretion system (T6SS) is a class of macromolecular secretion machines, contributing to its virulence. The aim of this study is thus to predict the immune-dominant epitope peptides from the Acinetobacter T6SS-associated protein of A. baumannii (AsaA). Methods AsaA protein retrieval from the bacteria was carried out using computational platforms and the evaluation of antigenicity and allergenicity was performed. The T-cell epitopes of major histocompatibility complex class II binders were identified followed by molecular docking of the immune-dominant epitopes with human leukocyte antigen alleles using the ClusterPro server (https://cluspro.org/help.php). Additionally, the B-cell epitopes were predicted. Results Immune-informatic analysis showed immune-dominant peptides in the most favored regions with promising interactions with HLA alleles DP, DQ, DR, and toll-like receptor showing high binding capacity. Conclusion In the present investigation, epitope 1 (LILFLIGNY) was found to be a promising candidate for the synthesis of vaccines. However, it requires further experimentation for its immunological memory and response.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要