谷歌浏览器插件
订阅小程序
在清言上使用

Inhibitory interactions of the 2,3-dihydro-6,7-dihydroxy-1H-isoindol-1-one scaffold with Bunyavirales cap-snatching endonucleases expose relevant drug design features.

European Journal of Medicinal Chemistry(2024)

引用 0|浏览9
暂无评分
摘要
The World Health Organization (WHO) identifies several bunyaviruses as significant threats to global public health security. Developing effective therapies against these viruses is crucial to combat future outbreaks and mitigate their impact on patient outcomes. Here, we report the synthesis of some isoindol-1-one derivatives and explore their inhibitory properties over an indispensable metal-dependent cap-snatching endonuclease (Cap-ENDO) shared among evolutionary divergent bunyaviruses. The compounds suppressed RNA hydrolysis by Cap-ENDOs, with IC50 values predominantly in the lower μM range. Molecular docking studies revealed the interactions with metal ions to be essential for the 2,3-dihydro-6,7-dihydroxy-1H-isoindol-1-one scaffold activity. Calorimetric analysis uncovered Mn2+ ions to have the highest affinity for sites within the targets, irrespective of aminoacidic variations influencing metal cofactor preferences. Interestingly, spectrophotometric findings unveiled sole dinuclear species formation between the scaffold and Mn2+. Moreover, the complexation of two Mn2+ ions within the viral enzymes appears to be favourable, as indicated by the binding of compound 11 to TOSV Cap-ENDO (Kd =28 ± 3 μM). Additionally, the tendency of compound 11 to stabilize His+ more than His- Cap-ENDOs suggests exploitable differences in their catalytic pockets relevant to improving specificity. Collectively, our results underscore the isoindolinone scaffold's potential as a strategic starting point for the design of pan-antibunyavirus drugs.
更多
查看译文
关键词
Isoindolinone scaffold,metal chelation,pan-antivirals,Bunyavirales,cap-snatching endonuclease inhibitor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要