Sub-surface shear wave velocity models developed based on a combined in-situ measurement of quasi-static cone penetration test (q-CPT) and microtremor datasets

Data in Brief(2024)

Cited 0|Views3
No score
Abstract
A representative sub-surface shear wave velocity model is crucial for seismic hazard studies, as seismic waves are affected by sub-surface characteristics. The offered data in this article were mainly developed based on a quasi-static cone penetration test (q-CPT) collected at the west coast town of Aceh, Indonesia. Microtremor datasets measured at the same locations were employed to extend the depth of the sub-surface models and to validate the models. The in-situ q-CPT data were collected using a locally manufactured Begemann's type cone penetration test apparatus. Twenty seven (27) q-CPT soundings were performed to typical depths of 20 m or measuring cone tip resistances of at least 150 kg/cm2. Several empirical approaches were employed to deduce the sub-surface parameters, including shear wave velocity. To enhance the sub-surface model depth, 23 in-situ microtremor data were recorded using 3 components (3C) of Geobit S100 and RaspberrySHAKE (RS-3D) seismometers at the same locations where the q-CPTs were sounded. At the same time, these microtremor datasets were also utilized to validate the developed sub-surface shear wave velocity models using the forward modeling method. Therefore, all the proposed sub-surface shear wave models presented in this article have been validated. These sub-surface shear wave velocity models can be used for site characterization, i.e., site response analysis, seismic microzonation, or spatial urban planning.
More
Translated text
Key words
Soil investigation,in-situ testing,shear wave velocity,seismic microzonation,site characterization
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined