Intranasal influenza-vectored COVID-19 vaccines confer broad protection against SARS-CoV-2 XBB variants in hamsters

PNAS Nexus(2024)

引用 0|浏览1
暂无评分
摘要
Abstract The XBB.1.5 subvariant has garnered significant attention due to its exceptional immune evasion and transmissibility. Significantly, the evolutionary trajectory of SARS-CoV-2 has shown continual progression, with a recent global shift observed from XBB to BA.2.86, exemplified by the emergence of the predominant JN.1 subvariant. This phenomenon highlights the need for vaccines that can provide broad-spectrum antigenic coverage. In this study, we utilized a NS1-deleted (dNS1) influenza viral vector to engineer an updated live attenuated vectored vaccine called dNS1-XBB-RBD. This vaccine encodes the receptor binding domain (RBD) protein of the XBB.1.5 strain. Our findings demonstrate that the dNS1-XBB-RBD vaccine elicits a similar systemic and mucosal immune response compared to its prototypic form, dNS1-RBD. In hamsters, the dNS1-XBB-RBD vaccine provided robust protection against the SARS-CoV-2 immune-evasive strains XBB.1.9.2.1 and Beta. Remarkably, nasal vaccination with dNS1-RBD, which encodes the ancestor RBD gene, also effectively protected hamsters against both the XBB.1.9.2.1 and Beta strains. These results provide valuable insights about nasal influenza-vectored vaccine and present a promising strategy for the development of a broad-spectrum vaccine against COVID-19 in the future.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要