谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Exploring the structure and hydrogen storage capacity of CeHn0/+ clusters.

H H Zhao, S J Huang,X S Li, W W Yu,Y W Fu, Y Liu, H Y Wang

Physical Chemistry Chemical Physics(2024)

引用 0|浏览4
暂无评分
摘要
The unique 4f orbitals and abundant electronic energy levels of rare earth elements enable effective doping and modification to enhance hydrogen storage performance, making it an increasingly prominent focus of research. The structures of neutral and cationic CeHn0/+ (n = 2-20) clusters have been determined using the Crystal Structure AnaLYsis by Particle Swarm Optimization (CALYPSO) method in conjunction with density functional theory (DFT). Interestingly, the CeH13 and CeH14+ exhibit remarkable stability in the doublet state with Cs and C2v symmetry, respectively. The adsorption energy of CeHn0/+ (n = 2-20) suggests a preference for H atoms to chemically adsorb on Ce atoms. The analysis of molecular orbital composition reveals that the stability of both CeH13 and CeH14+ is attributed to the significant hybridization between the H 1s and Ce 4f orbitals. Both CeH13 and CeH14+ demonstrate significant hydrogen storage capacities, with values reaching 8.5 wt% and 9.1 wt%, respectively.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要