Spatially Axial Boron Coordinated Single‐Atom Nanozymes with Boosted Multi‐Enzymatic Performances for Periodontitis Treatment

Advanced Functional Materials(2024)

Cited 0|Views9
No score
Abstract
AbstractSingle‐atom nanozymes (SAzymes) have made significant strides in antibacterial treatment but fall short as natural enzyme and drug replacements due to limited catalytic performance. Here, a rational strategy is presented for incorporating spatially axial boron (B) ligands to effectively modulate the local coordination environment of planar Fe─N4 motifs (Fe─B/N─C SAzymes). With electronic modulation, the Fe─B/N─C SAzymes exhibit significantly enhanced oxidase‐, peroxidase‐, and catalase‐like activities. Theoretical calculations highlight that the spatially axial B ligands effectively adjust the charge distribution around the planar Fe─N4 active center, which facilitates the heterolysis of H2O2 and the desorption of O2, resulting in accelerated H2O2 decomposition. Furthermore, the intrinsic photothermal effect of Fe─B/N─C SAzymes enhances multienzyme‐like activities, rapidly generating abundant reactive oxygen species (ROS), and achieving chemodynamic/photothermal synergistic therapy for impressive disinfection against periodontal‐related pathogenic bacteria. These findings offer a distinctive viewpoint for optimizing the local coordination environment of SAzymes with axial ligand to enhance their catalytic performance and effectiveness in periodontitis therapy.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined