Paeoniflorin exerts anti-PTSD effects in adult rats by modulating hippocampus and amygdala histone acetylation modifications in response to early life stress

Chemico-Biological Interactions(2024)

引用 0|浏览0
暂无评分
摘要
Early life stress (ELS) can cause long-term changes by epigenetic factors, especially histone acetylation modification, playing a crucial role, affect normal cognition, mood, and behavior, and increase susceptibility to post-traumatic stress disorder (PTSD) in adulthood. It has been found that paeoniflorin (PF) can cross the blood-brain barrier to exert anti-PTSD effects on adult PTSD rats. However, whether PF can alleviate the harmful effects caused by ELS in adulthood has not yet been reported. Therefore, to explore the relationship between ELS and PTSD susceptibility in adulthood and its mechanism, in this study, SPS was used as a stressor of ELS, and the mathematical tool Z-normalization was employed as an evaluation criterion of behavioral resilience susceptibility. To investigate the regulatory mechanism of PF on histone acetylation in the hippocampus and amygdala of ELS rats in adulthood, using changes in HATs/HDACs as the entry point, meanwhile, the epigenetic marks (H3K9 and H4K12) in the key brain regions of ELS (hippocampus and amygdala) were evaluated, and the effects of PF on behavioral representation and PTSD susceptibility were observed. This study found that ELS lead to a series of PTSD-like behaviors in adulthood and caused imbalance of HATs/HDACs ratio in the hippocampus and amygdala, which confirms that ELS is an important risk factor for the development of PTSD in adulthood. In addition, paeoniflorin may improve ELS-induced PTSD-like behaviors and reduce the susceptibility of ELS rats to develop PTSD in adulthood by modulating the HATs/HDACs ratio in the hippocampus and amygdala.
更多
查看译文
关键词
early life stress,paeoniflorin,histone acetylation,post-traumatic stress disorder,hippocampus,amygdala
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要