谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Hundness and band renormalization in the kagome antiferromagnets Mn_3X

arxiv(2024)

引用 0|浏览6
暂无评分
摘要
The interplay of topological band structures and electronic correlations may lead to novel exotic quantum phenomena with potential applications. First-principles calculations are critical for guiding the experimental discoveries and interpretations, but often fail if electronic correlations cannot be properly treated. Here we show that this issue occurs also in the antiferromagnetic kagome lattice Mn_3X (X= Sn, Ge), which exhibit a large anomalous Hall effect due to topological band structures with Weyl nodes near the Fermi energy. Our systematic investigations reveal a crucial role of the Hund's rule coupling on three key aspects of their magnetic, electronic, and topological properties: (1) the establishment of noncollinear antiferromagnetic orders, (2) the weakly renormalized bands in excellent agreement with ARPES, and (3) a sensitive tuning of the Weyl nodes beyond previous expectations. Our work provides a basis for understanding the topological properties of Mn_3X and challenges previous experimental interpretations based on incorrect band structures.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要