Random Forest-Based Grouping for Accurate SOH Estimation in Second-Life Batteries

Joelton Deonei Gotz,José Rodolfo Galvão,Fernanda Cristina Corrêa, Alceu André Badin, Hugo Valadares Siqueira, Emilson Ribeiro Viana,Attilio Converti,Milton Borsato

Vehicles(2024)

引用 0|浏览0
暂无评分
摘要
Retired batteries pose a significant current and future challenge for electric mobility due to their high cost and the need for a state of health (SOH) above 80% to supply energy efficiently. Recycling and alternative applications are the primary options for these batteries, with recycling still undergoing research as regards more efficient and cost-effective techniques. While advancements have been made, researchers are actively seeking improved methods. Repurposing retired batteries for lower-performance applications like stationary systems or low-speed vehicles is recommended. Second-life batteries (SLB) can be directly reused or reconstructed, with the latter involving the disassembly, measurement, and separation of cells based on their characteristics. The traditional measurement process, involving full charge and discharge cycles, is time-consuming. To address this, a Machine Learning (ML)-based SOH estimator is introduced in this work, offering the instant measurement and estimation of battery health without complete discharge. The results indicate that the model can accurately identify SOH within a nominal capacity range of 1400–2300 mAh, with a resolution near 45.70 mAh, in under five minutes of discharging. This innovative technique could be instrumental in selecting and assembling SLB packs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要